Revalco equipments for industrial automation

EQUIPMENTS FOR INDUSTRIAL AUTOMATION

DIMENSIONS 2
CONTROL AND SEQUENCE PHASE RELAYS 3
MINIMUM / MAXIMUM RELAYS
Minimum Current relay (AC and DC) 4
Maximum Current relay (AC and DC) 4
Minimum Voltage relay (AC and DC) 5
Maximum Voltage relay (AC and DC) 5
AMMETERS - DOUBLE THRESHOLD (MIN / MAX) 6
STABILIZED SUPPLIES BATTERY CHARGERS 8

DIMENSIONS IN mm

- 2 DIN Modules
- 3 DIN Modules

CONTROL AND SEQUENCE PHASE RELAYS

- To control the correct sequence and presence of the phases in a three phase system, presence of the neutral and the control of the voltage values within the limits (70-100\%)
- POWER SUPPLY
- BURDEN
- PROTECTION CLASS
- INSULATION CLASS
- TEMPERATURE
- APPLYABLE LOAD
- ADJUSTMENT OF THE MIN. VOLTAGE VALUE
- SIGNALLING
- green led
if light ON, the sequence of the phases is correct; if light OFF, there is an anomaly
- green led "presence phases" if light ON, all the three phases and the neutral are present; if light OFF, there is an anomaly - green led "Min voltage" if light ON, the minimum voltage is within the limits; if light OFF, there is an anomaly
- CLOSING TIME OF THE CONTACT adjustable from 0 to 20 sec
- OUTPUT RELAY

10A 250V~ (NO-C-NC)

- DIMENSIONS / WEIGHT Kg.

3 DIN modules / 0,25

1RSQN

400 V (self-supplied between phase L1 and L2) $\sim 50 / 60 \mathrm{~Hz}$
1,5 W
IP20
II
operating $-10^{\circ} \mathrm{C} \div+55^{\circ} \mathrm{C}$
storage $-25^{\circ} \mathrm{C} \div+70^{\circ} \mathrm{C}$
three-phase voltage
from 70% to 100%
adjustable from 0 to 20 sec
10A 250V~ (NO-C-NC)
3 DIN modules / 0,25

1RSQE

- To control the correct sequence and presence of the three phases

- POWER SUPPLY

- BURDEN
- PROTECTION CLASS
- INSULATION CLASS
- TEMPERATURE
- APPLYABLE LOAD
- OUTPUT RELAY
- DIMENSIONS / WEIGHT Kg

400 V (self-supplied between phase L1 and L2) $\sim 50 / 60 \mathrm{~Hz}$
1,5 W
IP20
II
operating $-10^{\circ} \mathrm{C} \div+55^{\circ} \mathrm{C} /$ storage $-25^{\circ} \mathrm{C} \div+70^{\circ} \mathrm{C}$
three-phase voltage
8A 250V~ (NO-NC-C)
2 DIN modules / 0,11

CURRENT RELAYS

- BURDEN
- POWER SUPPLY STANDARD
- DC power supplies, galvanically insulated, on request
- ACCURACY
- TEMPERATURE
- SIGNALLING
operating relay power supply (ON) operating time

5\%

2 W
$230 \mathrm{~V} \pm 10 \%, 50 / 60 \mathrm{~Hz}$
operating $-10^{\circ} \mathrm{C} \div+55^{\circ} \mathrm{C}$ / storage $-25^{\circ} \mathrm{C} \div+70^{\circ} \mathrm{C}$
red led light
green led light
flashing green led

- GALVANIC SEPARATION BETWEEN INPUTS AND OUTPUTS
- insulation between inputs, outputs, power supply 2 kV for 1 min at 50 Hz
- insulation between the all circuits and earth 4 kV for 1 min at 50 Hz
- OUTPUT RELAY
- HYSTERESIS
- DELAY TIME
- CALIBRATION
- OVERLOADING
- DIMENSIONS / WEIGHT kg.

MINIMUM CURRENT RELAYS

1RSLI - Under single-phase AC current relay Multiple choice inputs: 2A, 5A and 10A

1RSLIC - Under single-phase DC current relay
Multiple choice inputs: $1 \mathrm{~mA}, 10 \mathrm{~mA}$ and $20 \mathrm{~mA}(4 \div 20 \mathrm{~mA})$

Supposing to control a load with the following ratings:
In=7A rated regular operating current
$\operatorname{Imin}=6 \mathrm{~A} \quad$ current at which 1RSLI relay is requested to trip

- Connect as shown in diagram (terminals 7 and 12 as $\operatorname{Imin}=6 \mathrm{~A}$)

- NOTE: contact position shown is related to a powered device NOT in alarm
- Set "Current \%" trimmer (Ex. to 60\%) since:

$$
\mathrm{I} \%=\frac{6(1 \mathrm{~min})}{10(1 \mathrm{limit})} \times 100=60 \%
$$

- Set "Hysteresis \%" trimmer to 10%. Obtain a tripping window of 6 to 6,6 A $(6 A+10 \%=6,6 A)$.
The relay will trip at 6 A and regular operation will start again at $6,6 \mathrm{~A}$.
- Set "Operating time" trimmer. This makes it possible to delay the relay tripping time from 1 to 30 seconds; during the delay the "Power ON" led will flash, at the end of the delay the "Alarm" led will turn on and the relay will trip.

16A 250V ~ resistive load
$1 \div 45 \% \quad$ adjustable potentiometer on front
$1 \div 30$ sec adjustable potentiometer on front
$30 \div 100 \%$ adjustable potentiometer on front
2 In for 10 sec
3 DIN modules / 0,25

MAXIMUM CURRENT RELAYS

1RSHI - Over single-phase AC current relay Multiple choice inputs: 2A, 5A and 10A

1RSHIC - Over single-phase DC current relay Multiple choice inputs: $1 \mathrm{~mA}, 10 \mathrm{~mA}$ and $20 \mathrm{~mA}(4 \div 20 \mathrm{~mA})$

Supposing to control a load with the following ratings:
$\mathrm{In}=5 \mathrm{~A} \quad$ rated regular operating current
Imax=6A current at which 1RSHI relay is requested to trip

- Connect as shown in diagram (terminals 7 and 12 as $\operatorname{Imax}=6 \mathrm{~A}$)

- NOTE: contact position shown is related to a powered device NOT in alarm
- Set "Current \%" trimmer (Ex. to 60\%) since:

$$
1 \%=\frac{6(1 \text { max })}{10(1 \text { limit })} \times 100=60 \%
$$

- Set "Hysteresis \%" trimmer to 10\%. Obtain a tripping window of 5,4 to 6 A (6A$10 \%=5,4 \mathrm{~A}$).
The relay will trip at 6 A and regular operation will start again at $5,4 \mathrm{~A}$.
- Set "Operating time" trimmer. This makes it possible to delay the relay tripping time from 1 to 30 seconds; during the delay the "Power ON" led will flash, at the end of the delay the "Alarm" led will turn on and the relay will trip.

- BURDEN

2 W

- POWER SUPPLY STANDARD
- DC power supplies, galvanically insulated, on reques
- DC power supplies, galvanically insulated, on request
- TEMPERATURE
operating $-10^{\circ} \mathrm{C} \div+55^{\circ} \mathrm{C}$ / storage $-25^{\circ} \mathrm{C} \div+70^{\circ} \mathrm{C}$
- SIGNALLING operating relay red led light power supply (ON) green led light
operating time
flashing green led

- GALVANIC SEPARATION BETWEEN INPUTS AND OUTPUTS

- insulation between inputs, outputs, power supply 2 kV for 1 min at 50 Hz
- insulation between the all circuits and earth 4 kV for 1 min at 50 Hz
- OUTPUT RELAY
- HYSTERESIS
- DELAY TIME
- CALIBRATION
- OVERLOADING
- DIMENSIONS / WEIGHT kg.

MINIMUM VOLTAGE RELAYS

1RSLV - Under single-phase AC voltage relay Multiple choice inputs: $100 \mathrm{~V}, 300 \mathrm{~V}$ and 500 V

1RSLVC - Under single-phase DC voltage relay
Multiple choice inputs: $1 \mathrm{~V}, 5 \mathrm{~V}$ and $10 \mathrm{~V}(60 \mathrm{mV}$ and other on request)

Supposing to control a load with the following ratings:
Vn=230 VCA rated regular operating voltage
Vmin=200 VCA voltage at which 1RSLV relay is requested to trip

- Connect as shown in diagram (terminals 7 and 11 as Vmin=200V)

- NOTE: contact position shown is related to a powered device NOT in alarm
- Set "Voltage \%" trimmer (Ex. to 66,7\%) since:

$$
\mathrm{V} \%=\frac{200(\mathrm{~V} \text { min })}{300(\mathrm{~V} \text { limit })} \times 100=66,7 \%
$$

- Set "Hysteresis \%" trimmer to 10%. Obtain a tripping window of 200 to 220 V $(200 \mathrm{~V}+10 \%=220 \mathrm{~V})$.
The relay will trip at 200 V and regular operation will start again at 220 V .
- Set "Operating time" trimmer. This makes it possible to delay the relay tripping time from 1 to 30 seconds; during the delay the "Power ON" led will flash, at the end of the delay the "Alarm" led will turn on and the relay will trip.

16A 250V ~ resistive load
$1 \div 45 \% \quad$ adjustable potentiometer on front
$1 \div 30$ sec adjustable potentiometer on front
$30 \div 100 \%$ adjustable potentiometer on front
2 In for 10 sec
3 DIN modules / 0,25

MAXIMUM VOLTAGE RELAYS

1RSHV - Over single-phase AC voltage relay Multiple choice inputs: $100 \mathrm{~V}, 300 \mathrm{~V}$ and 500 V

1RSHVC - Over single-phase DC voltage relay
Multiple choice inputs: $1 \mathrm{~V}, 5 \mathrm{~V}$ and $10 \mathrm{~V}(60 \mathrm{mV}$ and other on request)

Supposing to control a load with the following ratings:
Vn=230 VCA rated regular operating voltage
Vmax $=250$ VCA voltage at which 1RSHV relay is requested to trip

- Connect as shown in diagram (terminals 7 and 11 as Vmax=250V)

- NOTE: contact position shown is related to a powered device NOT in alarm
- Set "Voltage \%" trimmer (Ex. to 83,33\%) since:

$$
\mathrm{V} \%=\frac{250(\mathrm{~V} \text { max })}{300(\mathrm{~V} \text { impostata })} \times 100=83,33 \%
$$

- Set "Hysteresis \%" trimmer to 5%. Obtain a tripping window of 237,5 to 250 V ($250 \mathrm{~V}-5 \%=237,5 \mathrm{~V}$).
The relay will trip at 250 V and regular operation will start again at $237,5 \mathrm{~V}$
- Set "Operating time" trimmer. This makes it possible to delay the relay tripping time from 1 to 30 seconds; during the delay the "Power ON" led will flash, at the end of the delay the "Alarm" led will turn on and the relay will trip.

AMMETERS - DOUBLE THRESHOLD (MIN / MAX)

- BURDEN
- AUXILIARY POWER SUPP
- CLASS
- DISPLAY
- RANGE
- Input 5A - it is necessary to
- CT RANGE
- MAXIMUM CURRENT
- PERMANENT OVERLOAD
- THERMIC OVERLOAD (1s)
- RELAY
- GALVANIC INSULATION
- DIMENSIONS
- FUNCTIONS

2VA
230 VAC $\pm 10 \%$ standard $50 / 60 \mathrm{~Hz}$
$0,5 \% \pm 2$ digit referred to the end scale value
2 display 3 digits each red colour. Digit height 8 mm
Input from 0,1 to 999A with 5A steps, selectable by a frontal button
CT .../5A correspondent to the end scale value setted
from 5 to 999A with 5A steps, selectable by a frontal button 6A
$110 \% I_{\text {nom }}$
$200 \% I_{\text {max }}$
1 NO contact - 250V/10A resistive load
4 kV from coil and contact
2 DIN modules
measure of current in true RMS by CT.../5A
2 settable current thresholds with only one NO output relay settable disconnection optical prealarm.

Display visualization: when powered all the segments of display and LED lights on for few seconds. After that, the measure page appears.

	DESCRIPTION
	TRMS (AC+DC) value. Decimal point is present only if the setted CT value is lower than 100.
Dot situated in the upper right side (when lights on) shows that the output relay is active.	
When display flashes shows that threshold is "ON".	

PROGRAMMING: To enter in programming page, make a long pressure (4 seconds about) on the front button. When the programming request is recognised the first settable parameter appears. Releasing the button all words will flash quickly, this situation will remain until the end of procedure.
After 4 seconds the pages with configuration parameters start to be displayed; one every 4 seconds showing the actual selected value.
If it is necessary to see the values without any modification press shortly once the button when the proper page is displayed.
To change the values of parameters, it is enough to press the frontal button while this parameter is displayed. To fast forward maintain pressure on the frontal button.
The value is automatically saved in permanent way when the automatic display of the pages starts again.

IMPORTANT NOTE:
during the programming the output relay condition IS NOT MODIFIED. The normal work restart automatically at the end of programming

After powering the relay is not active for the first 10 seconds to permits the measure stabilization. This device measures and controls the instantaneous value of current on terminals, verifying continuously if and when the conditions to activate the relay happen according to the needed conditions. It is possible to set 2 threshold levels called "Hit" (high trigger) and "Lot" (low trigger) both from 0 to 999 (except the decimal point). It is possible to obtain the following six different possibilities:

- Hit and Lot values = 0 (Default)

Output is constantly on rest for every current values setted (over range included)

- Hit and Lot values equal, but different from 0.

Output is constantly on rest for every current values setted (over range included). This option is useful for test or maintenance.

- Lot $=0$ and Hit > 0 : MAXIMUM THRESHOLD

This is the classic configuration. Relay is active when the measure is HIGHER than the Hit value and return to rest when the measure become LOWER or EQUAL to Hit value.

- Hit = 0 and Lot > 0 : MINIMUM THRESHOLD

Relay is active when the measure is LOWER than the Lot value and return to rest when the measure become HIGHER or EQUAL to Lot value.

- Lot value < Hit value, both higher than 0 DOUBLE THRESHOLD (OR)

Relay is light off only if the measure is within Lot (higher or equal) and Hit (lower or equal) limits.

Relay is light on when measure is HIGHER than Hit and LOWER than Lot values.

- Hit < Lot, both higher than 0 DOUBLE THRESHOLD (AND)

Relay is light off only if the measure is within Lot (lower) and Hit (higher) limits. Relay is light off when measure is LOWER or EQUAL than Hit and HIGHER or EQUAL than Lot values.

Two delay times functions are possible on the output relay (ton = Timer On, toF = Timer Off) both settable from 0 to 999 Seconds.
This times can be used also a filter for temporary conditions wich must not cause the intervention of relay.

1 Delay times as normal use
Threshold \triangle

2 Delay times as "filter"

STABILIZED SUPPLIES BATTERY CHARGERS

1RAL5155

Stabilized supplies and Battery chargers with SWITCHING and MOFSET technology. Fixed commutation frequency; low current ignition; instantaneous overload limiting device; over-current, over-voltage and over-temperature protection; working stop with lower voltage than 180 V ; automatic restart when stop conditions are cancelled.
Standards: safety CEI EN 61010-1 CAT II - class CEI EN 60688 - EMC (immunity) CEI EN 61000-6-2 (ex EN 50082-2) - EMC (emissions) CEI EN 61000-6-4 (ex EN 50081-2)

- POWER SUPPLY
- CONFIGURATION
- INSULATION VOLTAGE
- BURDEN
- STABILIZED OUTPUT
- MAINTENANCE CHARGE
- STANDARDIZED CHARGE
- DIMENSIONS / WEIGHT
180... 250 VAC
26.4VDC - 4ADC / 13.2VDC - 8ADC

4 kV between inputs and outputs
<1W (EuP)
<3\% ondulation
$2,23 \mathrm{~V}$ for each element
DIN41773 (IU)
9 DIN modules / 0,4 kg

1RAL5155M

Stabilized supplies and Battery chargers with SWITCHING / MOFSET technology and functional status from remote (MODBUS RTU). Fixed commutation frequency; low current ignition; instantaneous overload limiting device; over-current, over-voltage and over-temperature protection; working stop with lower voltage than 180V; automatic restart when stop conditions are cancelled. Standards: safety CEI EN 61010-1 CAT II - class CEI EN 60688-EMC (immunity) CEI EN 61000-6-2 (ex EN 50082-2) - EMC (emissions) CEI EN 61000-6-4 (ex EN 50081-2).

- POWER SUPPLY
- CONFIGURATION
- INSULATION VOLTAGE
- BURDEN
- STABILIZED OUTPUT
- MAINTENANCE CHARGE
- STANDARDIZED CHARGE
- MODBUS RTU OUTPUT
- DISPLAY
- PUSH BUTTON
- DIMENSIONS / WEIGHT
- POWER SUPPLY
- INSULATION VOLTAGE

RDEN

- MAINTENANCE CHARGE
- STANDARDIZED CHARGE
- MODBUS RTU OUTPUT
- PUSH BUTTON
- DIMENSIONS / WEIGHT
180...250 VAC
26.4VDC - 4ADC / 13.2VDC - 8ADC

4 kV between inputs and outputs
<1 W (EuP)
<3\% ondulation
$2,23 \mathrm{~V}$ for each element
DIN41773 (IU)
on front
3 digits for current and voltage reading on front for reading commutation (current/voltage)
9 DIN modules / 0,4 kg

Revalco

Series connection
Parallel connection

Revalco

Via Giorgio Stephenson, 90-20157 MILANO TALY Telephone $++3902.39002153-$ Fax + +39 02.39002207

E-mail: info @revalco.it - Web site: www.revalco.it Revalco ${ }^{\circledR}$ is a trade mark - Made in Italy

